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ABSTRACT   

As an application to text mining, it is developed that a Statistical SPAM Filter using Matlab codes. SPAM is 

defined as ‘unwanted Emails’. This is very useful when a workstation receives more number of emails including SPAMs 

into the email box. Question is how to get rid off from SPAMs. More the SPAMs, greater is the chance of ignoring HAMs 

(Legitimate Emails). SPAM filters classify emails into SPAMs or HAMs. However, misclassifying hams is worse than 

misclassifying SPAMs. As a result, it is interested to get rid off from SPAMs keeping in mind that no legitimate emails are 

ignored. Existing, now-a-days, lots of rule based SPAM filters, however our interest is to develop statistical filter that uses 

Bayesian and SBPH approach on emails and to compare. Matlab codes are used to generate the test programme.  

KEYWORDS:  Statistical SPAM Filter Using Matlab Codes 

INTRODUCTION  

SPAM is defined as ‘unwanted Emails’. The problem arises when a person receives more number of SPAMs. 

More the SPAMs, greater is the chance of HAMs being unnoticed. So, the question is how to get rid off from SPAMs. On 

the other hand it is well known that spamming is one of the effective ways of email marketing due to its lesser cost. As a 

result  and high-reach endeavor , for very little investment and effort, spammers can reach millions of potential customers 

via bunch emails, and just 100 responses out of 10 million can turn them a profit. Recently, the Pew Internet & American 

Life Project reported that seven percent of Americans have purchased something through unsolicited emails. Thus, 

companies have started using this method for effective selling of their products.  Some companies, in order to maintain 

their prestige, started using third parties. Whatever may be the reason, the idea behind SPAMs is sales. As a result most of 

the SPAMs are sales pitched.  

On the other hand, same companies started using Spam filters to get rid off from the problem of receiving many 

SPAMs and to increase their productivity time and profit by not spending there time in unnoticing hams, in finding and 

deleting SPAMs etc. Based on the above two points, one wants to filter SPAMs (Non-spammer) and another (Spammer) 

wants to find a way to beat filters.  Thus, a stage is set for the war between spammers and Anti-spammers. Statistics says 

that, according to Feb, 2007 survey, spamming increased to 90 billion per day, almost a hike of 60 billion per day during 

2005 [8]. 

At the receiver’s end, non-spammers have following problems. 

Missing innocent mails is worse than receiving SPAMS. 

More SPAMs a user gets, the less likely to notice innocent mails. 
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Better the SPAM filter, more likely the user ignore everything they catch. 

In order to overcome the above difficulties, in recent times anti-spammers have come out with a rule based and 

statistical filters. As a result, Spammers followed the following methods to beat the filters to percolate the message to 

millions. Some of the observed negative tactics are listed below.   

 Misspelled paragraph or words 

 Changing message content 

 Increasing message volume  

 New delivery mechanism 

 Sentences without space 

 Inviting for the party 

 Usage of ‘Dear friend’ in the beginning of the mail 

 Subject line with upper case 

 Subject line ends with many exclamation marks 

 Replacing ‘.’ with ‘-’ in the email ID 

The war is still continuing. As a result, many have done the research on statistical filters using Bayesian approach 

[8,15,21]. Interestingly, Gregory L. Wittel, and S. Felix Wu have come out with methodologies to beet statistical filters in 

their research paper[19]. Our interest is to develop statistical softwares, on similar lines to Paul Graham and Yerazunis, for 

huge corpus of mails. 

E-mail spam is a subset of spam that involves sending nearly identical messages to numerous recipients by e-mail. 

[1,2,3,4,5]. However, initially the definition ‘unsolicited commercial mail’ was proposed in CAUCE [6].  Paul Jaudge 

desciribes a situation where in why companies are eager to make use of Spams as there daily routine hobby. According to 

him a company is selling wonky dolls for 50 dollars a doll. If the company lets the spammer send out 10 million mails and 

the response rate is just 0.1% it will make half a million dollars [7].  The rate of increase in the use of Spams by the 

companies is provided in references [8,9,10,11,12,13,14]. Spams were sent to 90 billion addresses per day in 2007, 

February.  

The use of filters is the main form of defense against spam. There are two groups of filters, Heuristic and 

Bayesian [15]: “The filters are called "heuristic" because they determine only the probability that a message may be junk e-

mail, based on rules created from empirical observation of thousands of junk e-mail messages”[16]. The original heuristic 

spam filters such as Spam Assassin and Bright mail are weighted filters whose features are generated by humans working 

in a reactive way. These filters use a fixed set of feature detectors, and set a threshold score for rejection of an email as 

“too spammy”. The first generation of these filters also had a human-generated weight set; now most heuristic filters use a 

neural net or other relaxation-based system to optimize the feature weighting [17]. 

A Bayesian filter needs no human intervention to generate the feature recognizers. By breaking the incoming text 
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into words, each word becomes a feature [18, 19]. The Bayesian filter counts the features (divided into spam and non-

spam) frequencies and from that ratio determines a local probability on a message [20]. The latest range of filters decodes 

e-mail to its eye-space message before filtering. This use of eye-space is what gives filters a distinct advantage. Although 

spammers may do a lot to disguise their spam from filters, they cannot disguise their sales pitch without distorting it 

enough to render it ineffective [15]. Every other area of a message can be modified extensively; they do not have to adhere 

to the eye-space rule. Because the target is human, to capture this Bill Yerazunis originally introduced Sparse Binary 

Polynomial Hashing (SBPH), which is an approach to tokenization using word pairs and phrases.  

DESIGN AND RESULTS 

The schematic diagram of the process of a Spam filter is as follows.  

 

First the email is passed through the tokenizer. Here email is busted into smaller components known as 

words/tokens. The tokenizer queries the dataset to identify the importance of each component and passes this information 

to the analysis engine or it passes through the black/white-list to take the decision immediately whether an email is spam or 

not. Black/white-list is a set of tokens where the end user customer is sure of tokens those lead to the decision Spam/Ham. 

The creation of the same is in the discretion of the end user. On the other hand, the analysis engine then calculates the 

disposition of the message into spam or non-spam. Based on the decision the additional action such as delivering or 

training a message can be taken.  

Thus there are three central components to a filter. 

1. Historical Dataset 

It’s a filter’s memory. It contains a rather large catalog of characteristics that the filter has learned over a period of 

time to identify the most important characteristics (of spam/ham) of a user’s email. The historical dataset of a statistical 

filter (actually the training process) contains counters to record the number of times each identifying mark was found in 
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each class of text, the number of messages analyzed and other information necessary to determine the nature of each 

characteristic. Suppose a classifier finds a new type of spam, it identifies new words and phrases, and these words or 

phrases are immediately updated into the dataset. For example, words like ‘Viagra’ and ‘call now’ discovered in spam are 

recorded. Over time, the recurrence of these words makes them excellent identifiers of spam. Innocent words are identified 

in the similar fashion. In the sense that words like ‘calculus’ or ‘Africa’ are stored in the dataset are identified as legitimate 

characteristics.  

2. Tokenizer 

The filter’s eyes. It is responsible off reading and interpreting an email, which it does by breaking it down into 

smaller components (tokens). The tokenizer works with the dataset to determine the significance of each token. 

3. Analysis Engine  

It is the filter’s technical part.  Selects every token of an email and weighs them to determine whether an email is 

spam using the specified algorithm.  

Here, the technical aspects of two types of filters are discussed, viz  i. Bayesian filter and ii. MCMC filter.  

In Bayesian filter, Paul Graham [18] approach is followed in order to generate probabilities associated with 

words.  A Matlab program has been developed for testing purpose.  To develop Spam filter using Bayesian approach, the 

process followed is mentioned below:  

To start with, create SPAM and HAM corpus. A Corpus is a mass of E-mails. Corpus (wordlist, database, lexicon, 

or dictionary) needs to be developed based on the application. As soon as the corpus is created, then convert each Email 

into a workable format. In the sense that, all the E-mails are converted to text files by removing unwanted special 

characters, extra space between words etc... To cope up with the difficulties posed by numeric values (in matlab) appeared 

in the E-mail, convert the numerals into strings by prefixing numerals with the word ‘zero’. The text files (converted 

emails) are allowed to pass through a tokenizer ( basically a command or a set of commands), which is responsible for 

reading and interpreting an email, which it does by breaking it down into smaller components ( called tokens). A token can 

be a word, phrase, header, web address, or any other small piece of text in an email. The tokenizer works with the corpus 

dataset to determine the significance of each token. Later the Analyzer engine chooses key characteristics in an email and 

weighs them to determine whether or not a message is spam. Analyzer engine requires the token values to take the decision 

on the email. Token values represent the level of spamminess or in other words, the probability that a given token is an 

identifier of spam.  To calculate the spamminess for each word or token (w) that appears in the corpus, the Paul Grahams 

formula is used: 

p(w) = b(w)/(b(w)+g(w)) 

Where b(w) = (the number of spam emails containing the word w) / (the total number of spam email mails) and 

g(w) = (the number of ham emails containing the word w) / (the total number of ham email mails) 

Tokens with a probability higher than a neutral 0.5 are considered spammy while tokens with a lower probability 

are considered hammy. Extreme cases are interesting i.e. tokens with a stronger disposition having values closer to 0 or 1. 
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It’s unfair to take the decision on a new mail as spam or ham, just based on the values of p(w)= 1 or 0,  due to lack of 

information on the tokens. Our own background information guides us here. As a result, it is followed that the Bayesian 

approach to determine an appropriate degree of belief about whether, when the word is seen again, it will be in a spam.  

Robinson has given the formula to deal with rare words as follows: 

Robinson_prob(w) = F(w) = (s*x+(n*p(w)))/(s+n) 

where s and x are chosen to optimize performance. s is the strength we want to give to our background 

information, x being the assumed value of a token when n=0. A good starting value for s and x are 1 and 0.5 respectively. n 

being the number of emails has been received that contain word w.  This yields a slight improvement in accuracy for many 

types of hard-to-classify messages, when a very little data has been collected for a particular token. Particularly useful in 

improving the identification of legitimate mail, thereby reducing false positives.  

A static value is assigned to single-corpus tokens i.e. for tokens those appear in only one corpus. Assign a value 

p(w) = 0.99 to tokens appearing only in spam corpus and  p(w)=0.01 to tokens appearing only in legitimate mail.  

Missing innocent mails is worse than receiving SPAMS. Thus to prevent false positives Graham [18] has doubled 

the occurrence of tokens in legitimate messages.   

There are tokens those are never seen before, or for which data are not collected. These tokens are ‘hapaxes’. A 

hapaxial value (ranging between 0.4 or 0.5) will be assigned for hapaxes.  It serves two purposes. First, it prevents 

unknown tokens from directing the outcome of the classification. Secondly, a threshold (minimum of five occurrences) is 

necessary to ensure honesty in our statistics and to avoid a situation in which the lack of data skews the overall results.  

Now, tokenization process leaves us with several tokens with distinct values. In other words, each e-mail is 

represented by a set of probabilities. It is required to combine these individual probabilities into an overall combined 

indicator of spamminess or hamminess for the e-mail as a whole. The filter uses a sorting algorithm (descending order) to 

reorder the tokens so that the most interesting ones are toward the top, since these give us the best information about the 

subject email. Typically, 15 most interesting tokens are considered to build a decision matrix (some uses all the token 

values). To get a combined probability, it is  looked at each token in our decision matrix as an independent test and use 

Graham’s approach to combine individual probabilities to produce a single outcome i.e. to find the spammines of an email.  

(F(w1)*F(w2)*…*F(w15))  / ( F(w1)*F(w2)*…*F(w15))+( (1-F(w1))*(1-F(w2))*…*(1-F(w15))) 

Any value greater than or equal to 0.90 is an indicator of Spam else a legitimate mail.  

Suppose a new mail comes, then tokenize and calculate F(w). Suppose a new token exists then a hapaxial value is 

assigned and calculate the probability of spamminnes of the email.  

Existing, now-a-days, lots of rule based SPAM filters, however our interest is to develop statistical filter that uses 

Bayesian and MCMC approach. A Bayesian filter needs no human intervention to generate the feature recognizers. By 

breaking the incoming text into words, each word becomes a feature. The Bayesian filter counts the features (divided into 

spam and non-spam) frequencies and from that ratio determines a local probability on a message [1]. In order to test the 

technique, a matlab programme [3] has been written. The programme is divided into two parts. 1. Tokenizer and                  
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2. Analyzer.   

A set of red coloured codes constitute Tokenizer and the rest is Analyzer engine. The tokenizer reads email one by 

one and creates a dataset. Later, once again reads email one by one, tokenizes each mail and passes the information to the 

Analyzer engine. The main codes for the tokenizer are “total_feature=lower(textread(line,'%s'));” and 

“t=lower(textread(line,'%s'));”. The first code creates the dataset and the later tokenizes each mail. Textread(.,’%s’) 

function reads a white-space or delimiter-separated string from text file. For more information kindly go through Matlab 

manual.  

clc 
clear 
fprintf('Enter no. of Spam mails as n=\n'); 
fprintf('Enter no. of mails as m=\n'); 
clear; 
n=15; 
m=65; 
fid=fopen('out.txt','w') 
fid1=fopen('file.txt','r') 
    line=fgetl(fid1); 
    total_feature=lower(textread(line,'%s')); 
   fprintf(fid,'%s\n',total_feature{:}); 
    while ~feof(fid1) 
        line=fgetl(fid1); 
        total_feature=lower(textread(line,'%s')); 
       fprintf(fid,'%s\n',total_feature{:}); 
end; 
fid2=fopen('out.txt','r') 
total_feature_out1=textscan(fid2,'%s'); 
total_feature_out=unique(total_feature_out1{:}); 
p=length(total_feature_out); 
fid1=fopen('file.txt','r') 
line=fgetl(fid1); 
t=lower(textread(line,'%s')); 
l=length(t); 
 

For testing purpose, Corpora of mails consisting of 15 SPAMS and 50 HAMS were selected. Tokenizer in total 

generated 11305 features. All these features are saved in ‘out.txt’.   To start with this collection of 11305 is considered as 

the dataset. A sample of the same is shown below.   

 
genuie 
and 
from 
the 
original 
manufacturer 
are 
selling 
by 
trusted 
vendor 
don't 
miss 
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this 
chance 
to 
buy 
hight-quality 
production 
our 
 

Analyzer compares the dataset with the information supplied by the tokenizer to find the spamminess of each 

word and finally calculates the spamminess of the entire email. For more details on the mathematical aspects kindly refer 

to ‘SPAM filter research report’.   

 
mat_conv=zeros([l length(total_feature_out)]); 
for k=1:length(total_feature_out); 
for j=1:l; 
mat_conv(j,k)=strcmp(total_feature_out{k},t{j}); 
end; 
end; 
mat_conv_trp=mat_conv'; 
occur_mat=sum(mat_conv_trp,2); 
for i=1:length(occur_mat) 
    if occur_mat(i) > 0 
        occur_mat(i)==1; 
    else occur_mat(i)==0; 
    end; 
end; 
  
 
while ~feof(fid1) 
    line=fgetl(fid1); 
t=lower(textread(line,'%s')); 
l=length(t); 
 
clear mat_conv; 
mat_conv=zeros([l length(total_feature_out)]); 
for k=1:length(total_feature_out); 
for j=1:l; 
mat_conv(j,k)=strcmp(total_feature_out{k},t{j}); 
end; 
end; 
clear occur_mat1; 
occur_mat1=zeros(l,1); 
mat_conv_trp=mat_conv'; 
occur_mat1=sum(mat_conv_trp,2); 
for i=1:length(occur_mat1) 
    if occur_mat1(i) > 0; 
        occur_mat1(i)==1; 
    else occur_mat1(i)==0 
    end; 
end; 
occur_mat=[occur_mat occur_mat1];  
end; 
occurmat=isfinite(1./occur_mat);    
occurmat=[occurmat sum(occurmat(:,1:n),2) sum(occurmat(:,n+1:m),2)]; 
LocalProb_spam_word=(occurmat(:,m+1)./n)./((occurmat(:,m+1)./n)+2*(occurmat(:,m+2)./(m-n))); 
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%total_occurmat=sum(occurmat,2); 
%robinson_prob=(0.5+(total_occurmat.*LocalProb_spam_word))/(1.+total_occurmat); 
%occurmat=[occurmat robinson_prob]; 
occurmat=[occurmat LocalProb_spam_word]; 
occurmat=[occurmat occurmat(:,m+1)+2*occurmat(:,m+2)]; 
for i=1:length(occurmat(:,1)); 
    if((occurmat(i,m+1) +2*occurmat(i,m+2))< 5)& (occurmat(i,m+1)==0) 
             occurmat(i,m+3)=0.45; 
    else if((occurmat(i,m+1) +2*occurmat(i,m+2))< 5)& (2*occurmat(i,m+2)==0) 
             occurmat(i,m+3)=0.45; 
        else if  ((occurmat(i,m+1)+2*occurmat(i,m+2))>=5)& (occurmat(i,m+1)==0) 
        occurmat(i,m+3)=0.01 
            else if ((occurmat(i,m+1)+ 2*occurmat(i,m+2))>=5)& (2*occurmat(i,m+2)==0) 
            occurmat(i,m+3)=0.99; 
         end; 
       end; 
        end; 
    end; 
end; 
fid0=fopen('Result65.txt','w'); 
 NSSC=0; 
 NS=0; 
   MS=zeros(p,1); 
MH=zeros(p,1); 
CS=zeros(p,1); 
CH=zeros(p,1);  
for j=1:m 
    for i = (occurmat(:,j) ~= 0) 
        occur_spam_prob=zeros([length(occurmat(i)) 2]); 
        occur_spam_prob=[occurmat(i,j) occurmat(i,m+3)]; 
        occur_spam_prob=sort(occur_spam_prob, 'descend'); 
        occur_spam_prob=[occur_spam_prob 1-occur_spam_prob(:,2)]; 
    end; 
    a=length(occur_spam_prob(:,1)); 
  
    if a>=10 
        prob= (prod(occur_spam_prob(1:10,2)))/(prod(occur_spam_prob(1:10,2))+prod(occur_spam_prob(1:10,3))); 
        fprintf(1, 'prob_spam_e%d=%f\n',j,prob); 
        fprintf(fid0, 'prob_spam_e%d=%f\n',j,prob); 
    else  prob= (prod(occur_spam_prob(1:a,2)))/(prod(occur_spam_prob(1:a,2))+prod(occur_spam_prob(1:a,3))); 
        fprintf(1, 'prob_spam_e%d=%f\n',j,prob); 
        fprintf(fid0, 'prob_spam_e%d=%f\n',j,prob); 
    end; 
    if prob < 0.9 
        fprintf(1,'Email%d = %s\n',j,'HAM') 
        fprintf(fid0,'Email%d = %s\n',j,'HAM') 
        if j<=n 
            MS=MS + occur_mat(:,j); 
  
        else CH=CH + occur_mat(:,j); 
  
        end; 
    else if prob >= 0.9 
            fprintf(1,'Email%d = %s\n',j,'SPAM') 
            fprintf(fid0,'Email%d = %s\n',j,'SPAM') 
            NS=NS+1; 
            if j<=n 
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                NSSC=NSSC+1; 
                CS=CS + occur_mat(:,j); 
             else MH=MH + occur_mat(:,j); 
  
            end; 
        end; 
    end; 
end; 
  
TS=(CS+MS); 
i=(TS==0); 
TS(i)=0.1; 
Skew_factor_Spam=0.5+(MS./TS)./2; 
TH=(CH+MH); 
i=(TH==0); 
TH(i)=0.1; 
Skew_factor_Ham=0.5+(MH./TH)./2; 
Prob_token_skew=(Skew_factor_Spam .* Skew_factor_Ham)./((Skew_factor_Spam .* Skew_factor_Ham)+((1-
Skew_factor_Spam).*(1-Skew_factor_Ham))); 
 

Finally the filter gives as the misclassification table.  The codes are as follows.  

  
fprintf(1,'--------------Misclassification Table--------------\n'); 
fprintf(fid0,'--------------Misclassification Table--------------\n'); 
fprintf(1,'\t \t | SCC=%d | SMC=%d |\n \t \t -----------------\n \t \t | HMC=%d | HCC=%d |\n\n',NSSC,n-NSSC,NS-NSSC,m-
n-NS+NSSC); 
fprintf(fid0,'\t \t | SCC=%d | SMC=%d |\n \t \t -----------------\n \t \t | HMC=%d | HCC=%d |\n\n',NSSC,n-NSSC,NS-
NSSC,m-n-NS+NSSC); 
  
fprintf(1,'Overall Error Rate = %d\n',(n+NS-2*NSSC)/m) 
fprintf(fid0,'Overall Error Rate = %d\n',(n+NS-2*NSSC)/m) 
  
 

The misclassification table is as follows with an error rate.  
 
--------------Misclassification Table-------------- 
         | SCC=15 | SMC=0 | 
         ----------------- 
         | HMC=8 | HCC=42 | 
  

Overall Error Rate = 1.230769e-001 
  

Markovian classifier uses Sparse Binary Polynomial Hashing (SBPH) methodology with the weighting series of 

the order 22n instead of common weight of 1. The motto of SBPH is to create a lot of distinctive features from an incoming 

text, which actually break the incoming text into short phrases from one to five (a default window length) words each [15]. 

For a window of length N, this generates 2 N −1 features. Each of these joint features can be mapped to one of the odd 

binary numbers from 1 to 2N − 1 where original features at “1” positions are visible while original features at “0” positions 

are hidden and marked as skipped. Thus the SBPH generates a huge feature base. Now the question is that whether 

possible to use a smaller database thereby increasing speed and decrease the memory requirement and, of course, by 

maintaining the accuracy of the result. In order to address the issue mentioned above, I slightly altered the technique by 

considering only the combinations of adjacent features without place holders between the features, with an additional 
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advantage of reducing the feature set. The reason behind the change adopted in the technique is the assumption of single 

space between the features in the input text. The dataset can still be reduced using the calibration measure, and is 

calculated in the programme; however it is not used at the moment.  

Thus the filter can be tightened to the extent as many phrases as we can make. In making phrases, the word order 

is more important than what words are used. These phrases, once tokenized, are inserted into the dataset in a fashion 

similar to that used in standard Bayesian analysis. Experimentally, it is found that the resulting accuracy increases as the 

weight increases based on the number of words in a phrase. Question arises on the extent of extra weight that the each sub 

phrase carries. Currently the best weight is the exponential super-increasing weights based on the weighting series 22n , 

used by Yerazunus [15]. Options are still open to come out with the better weights.  

In the process of finding out the local probabilities, instead of counting matches of single words, matches of 

words and word phrases are counted , up to the predetermined window length (i.e. 5 words). Next, look up for matched 

words in the mails, convert the relative counts of matched pairs to local probabilities, then use a standard Bayesian 

algorithm to combine the local probabilities to find the spamminnes of a mail.  The local probability formula is as follows: 

P(w) = 0.5+(((Nspam – Nnonspam)*Weght)/((Nspam+Nnonspam)*WeightMax)) 

A token may have a probability of .95, but sometimes it doesn’t provide any information on the decision it is 

involved in previously. If a token has been involved in several erroneous classifications in the past, not only the token to be 

weighted differently than a reliable token, but also the token’s presence in a message to suggest that the results that 

generate may have a higher likelihood of being incorrect. Thus, Calibration algorithms provide additional weighting 

calibration to tokens in the dataset, based on a token’s reliability. Its ultimate goal is to avoid the misclassification in future 

by identifying the features that are the least effective at accurately indentifying spam, and simultaneously reduces the 

feature set accordingly. In other words, to find out how far in one particular direction (spam or ham) a token is likely to 

skew and is as follows:  

K=(Ks *K i) / ( (Ks *K i)+ (1-Ks )*(1-K i)) 

Where Ks  and Ki  ‘s are skewing factor for both spam and legitimate emails respectively; a measurement of how 

far in one direction each token could possibly skew in the event of a misclassification.  

Ks  = 0.5+((Ms/(Cs + Ms ))/2 

And 

K = 0.5+((Mi/(Ci + Mi ))/2 

Ms and Mi variables represent the total number of misclassifications in spam and legitimate mail, and Cs and Ci 

represent the total number of correct classifications in each corpus when the token was present in the message. Since .5 

represents a neutral value, this probability shows no risk of skew. A value below 0.5 represent a skew in legitimate 

message and a value above 0.5 represents a skew in spams.  The feature set is reduced based on the threshold set, usually 

threshold of (0.35, 0.65) is used. Any tokens which do not fall inside this interval can be eliminated from the feature set. A 

neutral probability of 0.5 can be assigned to a new token for which the sufficient information is not there. 
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Another methodology to reduce the feature set is to pass emails through a Black/white-list. A Black/white-listing 

is a common technique used to stop spam. Blacklist contains the addresses of spammers or spam words. When a message 

comes in, a check is performed to see if the sender/token is listed in the blacklist. If yes, the message is automatically 

treated labeled as spam. White-list is the opposite; they contain users that are verified contacts. These users may send 

messages that seem spammy, but because they are listed on the whitelist, will be treated as ham. Black/white-list is a 

technique that, employed by a large system such as MAPS, has been shown to catch only 24% of spam, with a very high 

false positive. 

Following is the tokenizer of MCMC filter. It reads email one by one and tokenizes maintaining the order of the 

words appearing in the email using “textread(line,'%s')”. Later with a window of 5 words (default) at a time, it builds a 

feature set with the combination of the words. Suppose that first 5 words of a junk sentence is “one ear his posy hung “, 

then the tokenizer reads it and creates a feature set as ---one, one ear, one ear his , one ear his posy, one ear his posy hung .  

clear; 
clc; 
fprintf('Enter no. of Spam mails as n=\n'); 
fprintf('Enter no. of mails as m=\n'); 
n=15; 
m=65; 
fid=fopen('fileout.txt','r') 
fid1=fopen('file.txt','r') 
fid3=fopen('total_out.txt','w') 
while ~feof(fid1) 
    line=fgetl(fid1); 
    t=textread(line,'%s'); 
    l=length(t); 
    line1=fgetl(fid); 
    fid2=fopen(line1,'w') 
    clear feature_phrase; 
    feature_phrase=zeros(l,1); 
    for i=0:(l/5)-1 
        feature_chunk=t(5*i+1:5*i+5,1); 
        xlswrite('feature_chunk',feature_chunk); 
        [empty feature_chunk]=xlsread('feature_chunk.xls'); 
        for j=1:5 
            if j==1 
                feature_phrase=feature_chunk(j); 
                feature_phrase{1}(length(feature_phrase{1})+1)=' '; 
                fprintf(fid2,'%s\n',feature_phrase{:}); 
                fprintf(fid3,'%s\n',feature_phrase{:}); 
            else feature_phrase= strcat(feature_phrase,feature_chunk{j}); 
                feature_phrase{1}(length(feature_phrase{1})+1)=' '; 
                fprintf(fid2,'%s\n',feature_phrase{:}); 
                fprintf(fid3,'%s\n',feature_phrase{:}); 
            end; 
        end; 
    end; 
    if ~isempty(line),continue,end; 
end; 
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For testing purpose, the same Corpora of emails used in the earlier case have been selected. A sample of the 

tokenizer result for the first email is as follows.  

genuie  
genuie and  
genuie and from  
genuie and from the  
genuie and from the original  
manufacturer  
manufacturer are  
manufacturer are selling  
manufacturer are selling by  
manufacturer are selling by trusted  
vendor  
vendor don't  
vendor don't miss  
vendor don't miss this  
vendor don't miss this chance  
to  
to buy  
to buy hight-quality  
to buy hight-quality production  
to buy hight-quality production our  
online  
online shop  
online shop http://www.aurigaone.info  
online shop http://www.aurigaone.info only  
online shop http://www.aurigaone.info only today  
and  
and only  
and only for  
and only for you  
and only for you all  
prices  
prices eased  
prices eased for  
prices eased for zero60  
prices eased for zero60 p.s  
forward  
forward this  
forward this email  
forward this email to  
forward this email to zero10  
your  
your friends  
your friends and  
your friends and you'll  
your friends and you'll get  
a  
a good  
a good bid  
a good bid from  
a good bid from us  

 

Once the work for the entire email is done, then tokenizer passes the information to Analyzer engine. Analyzer 
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compares the features of each mail with the dataset and accordingly creates an occurrence matrix of every tokens/features 

and finally finds the number of spam mails and ham mails having the respective features. Later calculates the spamminnes 

of each token and hence the spamminnes of the entire email. Analyzer engine is as follows:  

fid3=fopen('total_out.txt','r') 
total_feature_out=importdata('total_out.txt'); 
p=length(total_feature_out); 
  
fid=fopen('fileout.txt','r') 
    line=fgetl(fid); 
feature_phrase=importdata(line); 
  u=length(feature_phrase); 
    clear mat_conv; 
    mat_conv=zeros([l p]); 
    for k=1:p 
        for j=1:u 
            mat_conv(j,k)=strcmp(total_feature_out{k},feature_phrase{j}); 
        end; 
    end; 
    mat_conv_trp=mat_conv'; 
    occur_mat=sum(mat_conv_trp,2); 
    while ~feof(fid) 
         line=fgetl(fid); 
          
 feature_phrase=importdata(line); 
  u=length(feature_phrase); 
        clear mat_conv; 
        mat_conv=zeros([l p]); 
        for k=1:p 
            for j=1:u 
                mat_conv(j,k)=strcmp(total_feature_out{k},feature_phrase{j}); 
            end; 
        end; 
        clear occur_mat1; 
        occur_mat1=zeros(p,1); 
        mat_conv_trp=mat_conv'; 
        occur_mat1=sum(mat_conv_trp,2); 
        occur_mat=[occur_mat occur_mat1]; 
         if ~isempty(line),continue,  end; 
end; 
 occurmat=isfinite(1./occur_mat);   
clear weight; 
   weight=zeros(p,1); 
 for i=1:p 
weight(i,1)=2^(2.*(sum(isspace(total_feature_out{i})))-2); 
   end; 
   
occurmat=[occurmat sum(occurmat(:,1:n),2) sum(occurmat(:,n+1:m),2)]; 
LocalProb_spam_word=0.5+(((occurmat(:,m+1)- occurmat(:,m+2)).*weight)./((2*max(weight)).*(occurmat(:,m+1)+ 
occurmat(:,m+2)+1))); 
%total_occurmat=sum(occurmat,2); 
%robinson_prob=(0.5+(total_occurmat 
%.*LocalProb_spam_word))/(1.+total_occurmat) 
%occurmat=[occurmat robinson_prob]; 
occurmat=[occurmat LocalProb_spam_word]; 
fid0=fopen('ResultMCMC.txt','w'); 
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 NSSC=0; 
 NS=0; 
    MS=zeros(p,1); 
MH=zeros(p,1); 
CS=zeros(p,1); 
CH=zeros(p,1); 
for j=1:m 
    for i = (occurmat(:,j) ~= 0) 
        occur_spam_prob=zeros([length(occurmat(i)) 2]); 
        occur_spam_prob=[occurmat(i,j) occurmat(i,m+3)]; 
        occur_spam_prob=sort(occur_spam_prob, 'descend'); 
        occur_spam_prob=[occur_spam_prob 1-occur_spam_prob(:,2)]; 
    end; 
    a=length(occur_spam_prob(:,1)); 
    
    if a>=10 
         prob= (prod(occur_spam_prob(1:10,2)))/(prod(occur_spam_prob(1:10,2))+prod(occur_spam_prob(1:10,3))); 
        fprintf(1, 'prob_spam_e%d=%f\n',j,prob); 
   fprintf(fid0, 'prob_spam_e%d=%f\n',j,prob); 
    else  prob= (prod(occur_spam_prob(1:a,2)))/(prod(occur_spam_prob(1:a,2))+prod(occur_spam_prob(1:a,3))); 
        fprintf(1, 'prob_spam_e%d=%f\n',j,prob); 
 fprintf(fid0, 'prob_spam_e%d=%f\n',j,prob); 
    end; 
    if prob < 0.9  
            fprintf(1,'Email%d = %s\n',j,'HAM') 
            fprintf(fid0,'Email%d = %s\n',j,'HAM') 
      if j<=n 
                MS=MS + occur_mat(:,j); 
                
            else CH=CH + occur_mat(:,j); 
                 
            end; 
    else if prob >= 0.9  
        fprintf(1,'Email%d = %s\n',j,'SPAM') 
        fprintf(fid0,'Email%d = %s\n',j,'SPAM') 
        NS=NS+1; 
        if j<=n 
            NSSC=NSSC+1; 
            CS=CS + occur_mat(:,j); 
             
        else MH=MH + occur_mat(:,j); 
            
        end; 
    end; 
    end; 
end; 
  
TS=(CS+MS); 
i=(TS==0); 
TS(i)=0.1; 
Skew_factor_Spam=0.5+(MS./TS)./2; 
TH=(CH+MH); 
i=(TH==0); 
TH(i)=0.1; 
Skew_factor_Ham=0.5+(MH./TH)./2; 
Prob_token_skew=(Skew_factor_Spam.*Skew_factor_Ham)./((Skew_factor_Spam.*Skew_factor_Ham)+((1-
Skew_factor_Spam).*(1-Skew_factor_Ham))); 
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The Analyzer engine outputs the result with the probability of spamminnes and categorizes to Spam if the 

probability is greater than or equal to .90 else to Ham. The result sheet is as follows. 

prob_spam_e1=0.999983 
Email1 = SPAM 
prob_spam_e2=0.999960 
Email2 = SPAM 
prob_spam_e3=0.999983 
Email3 = SPAM 
prob_spam_e4=0.999498 
Email4 = SPAM 
prob_spam_e5=0.999983 
Email5 = SPAM 
prob_spam_e6=0.999983 
Email6 = SPAM 
prob_spam_e7=0.999983 
Email7 = SPAM 
prob_spam_e8=0.999908 
Email8 = SPAM 
prob_spam_e9=0.999983 
Email9 = SPAM 
prob_spam_e10=1.000000 
Email10 = SPAM 
prob_spam_e11=1.000000 
Email11 = SPAM 
prob_spam_e12=0.999960 
Email12 = SPAM 
prob_spam_e13=0.998830 
Email13 = SPAM 
prob_spam_e14=0.999983 
Email14 = SPAM 
prob_spam_e15=0.999983 
Email15 = SPAM 
prob_spam_e16=0.484380 
Email16 = HAM 
prob_spam_e17=0.498861 
Email17 = HAM 
prob_spam_e18=0.490778 
Email18 = HAM 
prob_spam_e19=0.489619 
Email19 = HAM 
prob_spam_e20=0.494466 
Email20 = HAM 
prob_spam_e21=0.437167 
Email21 = HAM 
prob_spam_e22=0.490236 
Email22 = HAM 
prob_spam_e23=0.498698 
Email23 = HAM 
prob_spam_e24=0.509960 
Email24 = HAM 
prob_spam_e25=0.498438 
Email25 = HAM 
prob_spam_e26=0.490778 
Email26 = HAM 
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prob_spam_e27=0.490236 
Email27 = HAM 
prob_spam_e28=0.501823 
Email28 = HAM 
prob_spam_e29=0.491375 
Email29 = HAM 
prob_spam_e30=0.490778 
Email30 = HAM 
prob_spam_e31=0.489547 
Email31 = HAM 
prob_spam_e32=0.492080 
Email32 = HAM 
prob_spam_e33=0.491342 
Email33 = HAM 
prob_spam_e34=0.495508 
Email34 = HAM 
prob_spam_e35=0.491700 
Email35 = HAM 
prob_spam_e36=0.489585 
Email36 = HAM 
prob_spam_e37=0.491017 
Email37 = HAM 
prob_spam_e38=0.494792 
Email38 = HAM 
prob_spam_e39=0.492459 
Email39 = HAM 
prob_spam_e40=0.497396 
Email40 = HAM 
prob_spam_e41=0.491017 
Email41 = HAM 
prob_spam_e42=0.489422 
Email42 = HAM 
prob_spam_e43=0.492644 
Email43 = HAM 
prob_spam_e44=0.505273 
Email44 = HAM 
prob_spam_e45=0.496202 
Email45 = HAM 
prob_spam_e46=0.489374 
Email46 = HAM 
prob_spam_e47=0.486053 
Email47 = HAM 
prob_spam_e48=0.490063 
Email48 = HAM 
prob_spam_e49=0.495169 
Email49 = HAM 
prob_spam_e50=0.487551 
Email50 = HAM 
prob_spam_e51=0.492969 
Email51 = HAM 
prob_spam_e52=0.492291 
Email52 = HAM 
prob_spam_e53=0.490236 
Email53 = HAM 
prob_spam_e54=0.492080 
Email54 = HAM 
prob_spam_e55=0.498600 
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Email55 = HAM 
prob_spam_e56=0.498698 
Email56 = HAM 
prob_spam_e57=0.489719 
Email57 = HAM 
prob_spam_e58=0.496528 
Email58 = HAM 
prob_spam_e59=0.498698 
Email59 = HAM 
prob_spam_e60=0.493924 
Email60 = HAM 
prob_spam_e61=0.492481 
Email61 = HAM 
prob_spam_e62=0.505273 
Email62 = HAM 
prob_spam_e63=0.496875 
Email63 = HAM 
prob_spam_e64=0.491342 
Email64 = HAM 
prob_spam_e65=0.492622 
Email65 = HAM 

 

Finally it calculates the misclassification table. The codes are as follows. 

fprintf(1,'--------------Misclassification Table--------------\n'); 
fprintf(fid0,'--------------Misclassification Table--------------\n'); 
fprintf(1,'\t \t | SCC=%d | SMC=%d |\n \t \t -----------------\n \t \t | HMC=%d | HCC=%d |\n\n',NSSC,n-NSSC,NS-NSSC,m-
n-NS+NSSC); 
fprintf(fid0,'\t \t | SCC=%d | SMC=%d |\n \t \t -----------------\n \t \t | HMC=%d | HCC=%d |\n\n',NSSC,n-NSSC,NS-
NSSC,m-n-NS+NSSC); 
  
fprintf(1,'Overall Error Rate = %d\n',(n+NS-2*NSSC)/m) 
fprintf(fid0,'Overall Error Rate = %d\n',(n+NS-2*NSSC)/m) 
         

Below the misclassification table with overall error rate.  

--------------Misclassification Table-------------- 
         | SCC=15 | SMC=0 | 
         ----------------- 
         | HMC=0 | HCC=50 | 
  

Overall Error Rate = 0 
  
CONCLUSIONS 

The Bayesian filter misclassifies 8 Ham mails which is a serious concern. In-fact the Bayesian filter works on the 

unigram model, unigram model decreases the accuracy of the result rather than increasing the same.  However, this serious 

concern is taken care by MCMC filter which works on n-gram model. Though I have worked only on non-sparse sub 

feature phrases the result is satisfactory.  Theory suggests using Orthogonal Sparse Bigram (OSB). The idea behind this 

approach is to gain speed by working only with an orthogonal feature set inside the window, rather than the prolific and 

probably redundant features generated by SBPH. It is to be noted that the redundant features can also be removed using 

calibration measures.  Also, single feature do not provide sufficient information, hence by removing the same in the sliding 
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window feature set, the number of features (but not the same features, since the assumption of single space inputs) 

produced by the OSB and our technique is same.  However, our result is satisfactory with the presence of unigram feature 

(single feature) in a sliding window feature set, and hence decided to go with it.   Also, speed is reduced to almost 31%, 

since our technique produces exactly N (=5) features in a sliding window of length N, while SBPH generates 2 N-1 (=16) 

sub phrases.  
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